Jishin Kougaku Kenkyusho, Inc. Technical Report

TR No.0010

節点変位の線形補間機能について

目的・背景

SuperFLUSH/2D Ver6.2L04において、任意の2点 を結ぶ直線上の節点変位を2点の線形補間によって 求める機能(「LINEINTP」)の追加を行った。

本機能は主に、建屋に質点モデルを使用した場合 の、建屋質点レベル間の側方地盤節点の補間に用い ることを想定している。

このようなケースに関して、従来は剛ビーム要素 等を用いて線形補間を行っていたが、本機能を用い ることで自由度別に直接補間条件を付与することが 可能である。

本検討では、新機能 LINEINTP を用いた手法と剛 ビーム要素を用いた従来手法とを比較し、新機能の 正確性について検討した。

検討概要

使用する地盤モデルは図1のように切り欠き部に 建屋を模した質点モデルを有する2次元地盤とし、 地震応答解析を実施する。

切り欠き部側方の節点について、線形補間機能を 使用した場合(以降、「LINEINTP」とする)と、剛 ビーム要素を用いた場合(以降、「RIGID」とする) の解析結果の違いを検討した。

図2に図1の赤枠で囲んだ、切り欠き部左側面部 の詳細を示す。「RIGID」では質点モデルの階高に 合わせ2本の剛ビーム要素を配置し、それぞれをピ ン接合とした上で、地盤節点の水平自由度と接続し た。

「LINEINTP」では Z=-8m~0mの階の上下端の節 点を主節点として、主節点 1・2 を結ぶ直線上に存在 する 3 つの節点の X 方向自由度について線形補間機 能を適用した。両ケースとも右側面部も同様の設定 とし、切り欠き部底面には剛ビーム要素を配置した。

表1(a)~(c)に検討に用いた地盤モデルの物性諸 元を示す。境界条件は側方をエネルギー伝達境界、 底面を粘性境界とした。解析は等価線形解析とし、 図3(a)~(b)に各材料の歪依存特性を示す。

図2 切り欠き部側面詳細(左側)

表1(a) 地盤モデル物性諸元

材料番号	区分	ポアソン比	単位重量 (kN/m ³)	初期 せん断波速度 (m/sec)	初期 せん断弾性係数 _(kN/m²)	初期 減衰定数 (%)
1		0.450	19.00	230	102492	3.0
2		0.420	19.50	280	155894	3.0
3		0.400	21.00	450	433634	3.0
4		0.350	23.00	700	1149220	3.0

表1(b) 弱層物性

材料番号	区分	ポアソン比	弱層幅 (m)	初期 せん断弾性係数 (kN/m ²)	初期 減衰定数 (%)			
6	弱層	0.450	0.30	250000	3.0			
表1(c) 質点モデル諸元								

質点重量	回転慣性 重量	階高	ヤング 係数 (kN/m2)	せん断 弾性係数 (INI/m2)	ポアソ ン比	減衰	せん断 剛性	曲げ 剛性	釉 剛性	せん断 面積 (m2)	I (m4)	軸 面積 (m2)	せん断 面積比	
(kN)	(kNm2)	(m)	(m) (KN/ m2)	(KN/ mz)			(KN/ m)	(KINIM)	(KIN/ III)	(m2)		(112)		
312 50	320000													
500.50	520000	4.0	2.52E+07	1.05E+07	0.2	0.03	6.409E+05	1.050E+09	3.076E+06	0.244	41.667	0.488	0.5000	
562.50	576000													
		4.0	2.52E+07	1.05E+07	0.2	0.03	9.614E+05	1.5/5E+09	4.614E+06	0.366	62.500	0.732	0.5000	
18/5.00	1920000													
		4.0	2.52E+07	1.05E+07	0.2	0.03	3.205E+06	5.250E+09	1.538E+07	1.221	208.333	2.441	0.5000	
2343.75	2400000													
		4.0	2.52E+07	1.05E+07	0.2	0.03	3.525E+06	5.//5E+09	1.692E+07	1.343	229.167	2.686	0.5000	
3125.00	3200000		0.505.03	4.055.07			0.5045.00	0.4005.00	4 0005-07	4.050		0.000	0.5000	
0407.50	0500000	8.0	2.52E+07	1.05E+07	0.2	0.03	2.364E+06	8.400E+09	1.230E+07	1.953	333.333	3.906	0.5000	
3437.00	3520000		0.505.03	4.055.07		0.00	0.0055.00	4 0075 40	4 7005-07	0.000	470.400	5.045	0.5000	
2750.00	2040000	8.0	2.52E+07	1.05E+07	0.2	0.03	3.085E+00	1.207E+10	1./69E+0/	2.808	4/9.100	5.615	0.5000	
3750.00	3840000		2 5 25 1 07	1.055107	0.2	0.02	E 200E 100	1 7225 10	2 5205-07	4.020	807 500	0.057	0.5000	
7812.50	8000000	0000000	0.0	2.322+07	1.032+07	0.2	0.03	3.200E+00	1./32E+10	2.336E+07	4.029	087.300	8.037	0.5000
		4.0	2 525+07	1.055+07	0.2	0.02	9 400E±07	7.646E±10	2 240E±09	22.000	2024 074	22.000	1 0000	
6250.00	e 400000	4.0	2.32E+07	1.032407	0.2	0.03	0.400E+07	7.040E+10	2.24JE+08	32.000	3034.074	32.000	1.0000	
0200.00	0400000													

入力地震動

図4に入力地震動を示す。入力は水平1方向入力 とした。

最大加速度値は 409. 0gal であった。

比較結果

図 5(a)[~](c)に、RIGID および LINEINTP の X 方向 変位、X 方向加速度、X 成分応力の最大値コンター 図の比較を示す。いずれの図に関しても、結果は一 致していることが分かる。

図6に示す、切り欠き部左側方節点の最大変位深 度分布を図7に、それぞれの詳細な数値を表2に示 す。両者の結果は完全に一致することが確認できた。

図 5(b) X 方向加速度最大值分布

図6 最大值深度分布比較点 図7 X方向最大変位深度分布

表 2 X · Z 方向最大変位

7広垣		X	Z					
	RIGID	LINEINTP	RIGID	LINEINTP				
0	0.1242	0.1242	0.0034	0.0034				
-2	0.1224	0.1224	0.0032	0.0032				
-4	0.1205	0.1205	0.0031	0.0031				
-6	0.1186	0.1186	0.0030	0.0030				
-8	0.1168	0.1168	0.0029	0.0029				
-12	0.1131	0.1131	0.0027	0.0027				

まとめ

切り欠き部に質点モデルを有する2次元地盤を用 いて、SuperFLUSH/2D Ver6.2L04において実装され た任意の2点を結ぶ直線上の節点変位を2点の線形 補間によって求める機能の検証を行った。

剛ビームを用いる従来手法との比較を行い、解析 結果は完全に一致することが確認された。

